<u>Chemistry</u> Pretest 3.2 v 2016

- 1. Write 2 chemical equations to show how HSO₃⁻ acts as an acid. One will do it the Arrhenius way and the other will act as a Bronsted-Lowry acid.
- 2. Identify two Bronsted-Lowry bases in the following equation.

$$C_2H_4O_{2\,(aq)} \quad + AsH_{3(aq)} \quad \stackrel{\textstyle \longleftarrow}{\longleftarrow} \qquad \quad AsH_4{}^+{}_{(aq)} \quad \ + \qquad \quad C_2H_3O_2{}^-{}_{(aq)}$$

Also see the animation, showing the difference between acids with a high Ka(<u>strong acids</u>) versus those with low Ka(<u>weak acids</u>). Click on the links below the pretest 3.2 answers.

- 3. If the pH of a solution is 8.57, what is its [OH⁻]?
- 4. If the concentration of H⁺ is 0.00440 moles/L, what is its pOH?

- 5. If the acid HX has an equilibrium concentration of 0.600 M and a pH of 2.00, what is its K_A value? $HX_{(aq)} \stackrel{\longrightarrow}{\longleftrightarrow} H^+_{(aq)} + X^-_{(aq)}$
- 6. The K_A for HNO₂ is 4.5 x 10⁻⁴.

Calculate the equilibrium concentration of NO_2^{-1} in a solution of HNO_2 initially prepared as 0.00010 M. **Again show ICE chart.**

7. Dimethylamine, $(CH_3)_2NH$, is a weak base. The dissociation of dimethylamine and its ionization constant, K_b , are shown below.

$$(CH_3)_2NH_{(aq)} + H_2O_{(l)} \iff OH_{(aq)}^- + (CH_3)_2NH_2^+_{(aq)} \qquad K_b = 5.1 \times 10^{-4}$$

A chemistry student places 3.1×10^{-2} grams of dimethylamine into 5.0×10^2 mL of distilled water. Find its pH.

- 8. Start with $K_AK_B = K_w$. and use logs and log laws to relate the sum of pK_A and pK_B to the sum of pH and pOH. (4 m)
- 9. Use the K_{sp} for calcium fluoride to calculate its solubility in grams per liter. (CaF₂: $K_{sp} = 4.0 \times 10^{-11}$)
- 10. What is the solubility in moles/L of AlPO₄ in 0.050 M Na₃PO₄? Ksp of AlPO₄ = 9.84×10^{-21}
- 11. Determine the oxidation number for each atom in the following molecules and calculate the total contribution by the atom.
 - a) AlCl₃
 - b) OCl -
 - c) Mg^{2+}
 - d) KClO₃

Flashbacks

- One question from an old final. It could be on any topic.
- A calculation based on mixing problems (calorimetry), where a hot substance transfers its heat to a cooler liquid in a calorimeter. Watch those signs, and remember that after the heat-transfer, the mixture reaches a common final temperature.