Chemistry

Name

1. Write 2 chemical equations to show how $\mathrm{HSO}_{3}{ }^{-}$acts as an acid. One will do it the Arrhenius way and the other will act as a Bronsted-Lowry acid.
2. Identify two Bronsted-Lowry bases in the following equation.

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{AsH}_{3(\mathrm{aq})} \quad \rightleftarrows \quad \mathrm{AsH}_{4}^{+}(\mathrm{aq}) \quad+\quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }_{(\mathrm{aq})}
$$

Also see the animation, showing the difference between acids with a high Ka(strong acids) versus those with low Ka(weak acids). Click on the links below the pretest 3.2 answers.
3. If the pH of a solution is 8.57 , what is its $\left[\mathrm{OH}^{-}\right]$?
4. If the concentration of H^{+}is 0.00440 moles/L, what is its pOH ?

5. If the acid HX has an equilibrium concentration of 0.600 M and a pH of 2.00 , what is its K_{A} value?
$\mathrm{HX}_{(\mathrm{aq})} \rightleftarrows \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{X}^{-(\mathrm{aq})}$
6. The K_{A} for HNO_{2} is 4.5×10^{-4}.

Calculate the equilibrium concentration of $\mathrm{NO}_{2}{ }^{-1}$ in a solution of HNO_{2} initially prepared as 0.00010 M . Again show ICE chart.
7. Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$, is a weak base. The dissociation of dimethylamine and its ionization constant, K_{b}, are shown below.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{OH}^{-}{ }_{(\mathrm{aq})}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{b}}=5.1 \times 10^{-4}$

A chemistry student places 3.1×10^{-2} grams of dimethylamine into $5.0 \times 10^{2} \mathrm{~mL}$ of distilled water. Find its pH .
8. Start with $\quad \mathrm{K}_{\mathrm{A}} \mathrm{K}_{\mathrm{B}}=\mathrm{K}_{\mathrm{w}}$.
and use \log and \log laws to relate the sum of pK_{A} and $\mathrm{p} \mathrm{K}_{\mathrm{B}}$ to the sum of pH and pOH .
9. Use the $K_{s p}$ for calcium fluoride to calculate its solubility in grams per liter. $\left(\mathrm{CaF}_{2}: K_{s p}=4.0 \times 10^{-11}\right)$
10. What is the solubility in moles/L of AlPO_{4} in $0.050 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$?

Ksp of $\mathrm{AlPO}_{4}=9.84 \times 10^{-21}$
11. Determine the oxidation number for each atom in the following molecules and calculate the total contribution by the atom.
a) AlCl_{3}
b) $\mathrm{OCl}-$
c) Mg^{2+}
d) KClO_{3}

Flashbacks

- One question from an old final. It could be on any topic.
- A calculation based on mixing problems (calorimetry), where a hot substance transfers its heat to a cooler liquid in a calorimeter. Watch those signs, and remember that after the heat-transfer, the mixture reaches a common final temperature.

